Temperature Sensors

 RTD's - Thermocouples - Thermistors
General Comparisons

(

- Most accurate
- Best stability
- Higher linearity
- Best interchangeabilty
- Wide temperature range
- Current source required
- Smaller resistance change
- Low absolute resistance
- Self heating
- Higher sensor cost

- Largest variety of styles
- Self-powered
- Rugged
- Largest temperature range
- Small size / fast response

- Lowest stability

- Low voltage output
- Nonlinear
- Cold junction reference needed
- Lowest sensitivity
-200 to $1800^{\circ} \mathrm{C}$

- High resistance values - Large resistance change - Two wire ohms measurement - Low sensor cost - Small size / fast response	
- Limited temperature range - Current source required - Nonlinear - Self heating - Fragile	
-80 to $300^{\circ} \mathrm{C}$	

Resistance Temperature Detector's (RTD's) are constructed with a wire coil or a thin layer of metal to form a precision resistor. The resistance value changes very accurately and repeatedly in a positive direction when heated (Positive temperature coefficient). RTD assemblies can be used in a wide variety of configurations for all industries to give the highest accuracy of temperature measurement.

Thermocouples are constructed of two dissimilar metals welded together to form a junction. When this junction is heated there is a thermoelectric potential (emf) created on the millivolt level. The heated junction when compared to a reference junction (same junction type at a known temperature, usually $0^{\circ} \mathrm{C}$) has an output proportional to the difference in the two junctions temperatures.

Thermocouple

Thermistor

Thermistors are constructed with metal oxides formed into a bead and encapsulated in epoxy or glass. The resistance of a Thermistor has a nonlinear large negative change as it is heated (Negative temperature coefficient). The change in resistance during a temperature change of a Thermistor is several times greater than an RTD making measurement easier, but the temperature range is limited.

